Character Sheaves of Algebraic Groups Defined over Non-archimedean Local Fields

نویسنده

  • HADI SALMASIAN
چکیده

This paper concerns character sheaves of connected reductive algebraic groups defined over non-Archimedean local fields and their relation with characters of smooth representations. Although character sheaves were devised with characters of representations of finite groups of Lie type in mind, character sheaves are perfectly well defined for reductive algebraic groups over any algebraically closed field. Nevertheless, the relation between character sheaves of an algebraic group G over an algebraic closure of a field K and characters of representations of G(K) is well understood only when K is a finite field and when K is the field of complex numbers. In this paper we consider the case when K is a non-Archimedean local field and explain how to match certain character sheaves of a connected reductive algebraic group G with virtual representations of G(K). In the final section of the paper we produce examples of character sheaves of general linear groups and matching admissible virtual representations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tropical Cycle Classes for Non-archimedean Spaces and Weight Decomposition of De Rham Cohomology Sheaves

This article has three major goals. First, we define tropical cycle class maps for smooth varieties over non-Archimedean fields, valued in the Dolbeault cohomology defined in terms of real forms introduced by Chambert-Loir and Ducros. Second, we construct a functorial decomposition of de Rham cohomology sheaves, called weight decomposition, for smooth analytic spaces over certain non-Archimedea...

متن کامل

A pr 2 00 6 CHARACTER SHEAVES AND DEPTH - ZERO REPRESENTATIONS

In this paper we provide a geometric framework for the study of characters of depth-zero representations of unramified groups over local fields with finite residue fields which is built directly on Lusztig's theory of character sheaves for groups over finite fields and uses ideas due to Schneider-Stuhler. Specifically, we introduce a class of coefficient systems on Bruhat-Tits buildings of perv...

متن کامل

On the Classification of Rank 1 Groups over Non-archimedean Local Fields

We outline the classification of K-rank 1 groups over non-archimedean local fields K up to strict isogeny, as in [Ti1] and [Ti2]. We outline the classification of absolutely simple algebraic groups over non-archimedean local fields, up to strict isogeny. This is classical, and accounts of it have been written by Tits ([Ti1], [Ti2]) and Satake ([Sa]). Tits compiled tables of ‘admissible indices’...

متن کامل

Discrete Series Representations of Unipotent p-adic Groups

For a certain class of locally profinite groups, we show that an irreducible smooth discrete series representation is necessarily supercuspidal and, more strongly, can be obtained by induction from a linear character of a suitable open and compact modulo center subgroup. If F is a non-Archimedean local field, then our class of groups includes the groups of F -points of unipotent algebraic group...

متن کامل

Several approaches to non-archimedean geometry

Let k be a non-archimedean field: a field that is complete with respect to a specified nontrivial non-archimedean absolute value | · |. There is a classical theory of k-analytic manifolds (often used in the theory of algebraic groups with k a local field), and it rests upon versions of the inverse and implicit function theorems that can be proved for convergent power series over k by adapting t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008